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In our article (Hubac I., Neogrady P.: Phys. Revb@ 4558 (1994)) we have developed size-exte
sive Brillouin—Wigner coupled cluster (BWCC) theory. We have shown that the BWCC theo
fully equivalent to the standard coupled cluster theory. However, the BWCC theory does not
the so-called linked cluster theorem. In this article we discuss the cancellation of disconnectec
in the BWCC theory.
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The standard coupled cluster (CC) theory in its nondegenerate version for close
systems represents one of the most efficient methods for the inclusion of corre
effects in atoms and molecute® Nevertheless, its multireference version is far fre
being a standard method to account for correlation effects of generally open-she
tems. One of the main problems that the multireference coupled cluster (MR CC
ory as well as relative multireference many-body perturbation theory (MR MBPT) |
to face to is the problem of intruder states which may even cause divergence ©
theories. In our recent articfds®>we have developed the Brillouin—-Wigner couple
cluster (BWCC) theory. We have shown that the BWCC theory is fully equivalel
the standard CC theory, but it differs by the fact that it does not employ the li
cluster theorem. Therefore, a question arises how it is with the cancellation of di
nected diagrams in the BWCC theory since we have shown that the BWCC theol
size-extensive method. In this article we will discuss the cancellation of disconn
terms in the BWCC method in order to make clear the relation between the BWCi
standard CC theories. This question is also important with respect to possibil
multireference formulation of the BWCC theory.
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THEORETICAL

The details of the BWCC theory were presented in our artfctesHere, we mention
the main points again. The electronic Hamiltonian of an atomic or molecular sy
can be expressed in the second-quantized form as

N A /\+ N 1 N /\+ /\+ ASEAN
H=Z[E’h|QDXPXQ+§ Z[IPQM RIXE X5 Xs Xr @)

PQ PQRS
where [P h| Qdis a one-electron integralPQ || RSJis a two-electron integral anc
{P,Q,R,S,..} represents one-electron orthonormal basis set of spinorbitals on whic

define the system of creati((/b\(;;) and annihilatior()\(P) operators. Using the hole-pal
ticle formalism the electronic Hamiltoniat)(can be expressed in the form

N N /\+/\ 1 /\+ /\+ VANERVAN
H =g [H @0+ 3 fogNIXS X +5 Y PQIIRSNDGXG X Xd . ()
PQ PQRS

where N[...] denotes the normal ordered product of creation and annihilation ope
with respect to the Fermi vacuufh,[Jandfpgpare matrix elements of the Fock operat

foo=P fil QO+ Y [P ] QI+ (P { 1QU 3
100,

with the summation being over all spinorbitals occupiedpyil|As is usual in pertur-
bation theory, let us split the exact Hamiltoni&hifito two parts, namely

N N N
H=Hy+V 4
N N /\+ N
Ho = [@g H| oL+ Z €p N[Xp X4l (5)
P
N /\+ N 1 /\+ /\+ N N
V= (foq— 8p NIXE Xl +5 3 [PQ il RENIXE X5 Xs Xl ©)
PQ PQRS

Wherell-\|O is a zeroth-order Hamiltoniagp are one-electron (spinorbital) energies a
(is a perturbation. This type of partitioning is denoted as a Mgller—Plesset (MP
In general, our perturbatiov consists of two parts, namely the one-electron part
two-electron part. We recall that the one-electron part vanishes when the Hartree
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spinorbitals are employed; however, in this work we will in general assume that
Hartree—Fock spinorbitals are used. Let us further assume that we know the solu
the characteristic problem of the zeroth-order Hamiltonian

N
Ho®; = Ei®; (7)
N
and our task is to find a solution of the Schrédinger equation for the exact Hamiltbni
N
HY, =&Y, . )

If we are interested in the ground state, the exact wave fundtjoand the exact
energy€, can be expanded in the Brillouin—-Wigner (BW) perturbation series as foll

NN AN NN

|WoC= (1+BV+BVBV +...) [d,0 (9)
N N AN N NN NN
€= [, [H] Do+ [y N + VBV +VBVBY + ... by, (10)

N
whereB is the BW type of propagator

A_< 0T

B=y @y

[E=0] Eo i

We recall that the BW perturbation expansidh &t the same time prescribes the nc
malization of the exact wave functions to be

@ W= @by 1 a2

which is referred to as an intermediate normalization. If we introduce a new ope
A
Q as

NN AN NN

O=1+BV+BVEBY+. 13

the exact wave functior®) can be expressed in the form
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N
W= Q [P0 14

N
As one can see, the operafdiis a wave operator (it transforms the zeroth-order wi
function of the ground state into the exact wave function) and obeys the operator
tion

AN NANNN

Q=1+BVQ (15)

that may be viewed as a Bloch equation in the Brillouin—Wigner form in contrast t
standard Bloch equation

N
HQ = QHQ (16)

that determines the wave operat%rin the MR Rayleigh—Schrodinger, perturbatic
theory as well as MR CC theortés?? In order to obtain the wave operafiin a form
suitable for practical calculations, we project Ebp)(onto the excited configuration:
®; from the left and the ground state configuration from the right which brings
system of equations

(€~ E) [®; [Q] B, [, NQ| by (17

that may be viewed as a matrix formulation of the Bloch equation in the Brillouin—\
ner form. Using the wave operatdr3], the exact energylQ) can be written as

N AWAY
€ = [@; Ho| P [, VQ| PO 18

N
So far, we have specified the wave operdby means of the BW pertyrbatio
expansion 13) or (15). If we adopt an exponential ansatz for the wave opefatave
may speak about the Brillouin—Wigner coupled-cluster theicey;

N
o=¢ | 19
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N
whereT is a cluster operator defined with respect to the ground state configuigtic
and, in general, involves one-bod?/l)g two-body @2) up to theN-body @N) cluster
components

AN AN

N N
T=T+To+ ...+ Ty (20)

with N being the total number of electrons. Substituting the exponential ahSpaintp
the expression for the exact ener@g)( we get

N N
€9 = [Py |Hol ®oL+ [P |V €| &L (21)
which implies that the correlation energg,
N
is given by the expression
AN
AE, =D, |V el Dy 0. 23

Since at most doubly-excited clusters may contribute to the energy, the correlati
ergy takes the final form

AN NN 1 /\/\2
A€y = [@g VT, @y[H [ [VT,| Pyl 21 (@, VT7| Dol (24)

or by means of diagrammatic techniques (nonoriented Hugenholtz diagrams)

M=« >+ @ + o ‘< (25)

where the one-electron part of the perturba{\i’ds represented by a full circle with on
pair of fermion lines, two-electron part bey a full circle with two pairs of fermion
lines, one-electron cluster operaﬁlrby an open circle with one pair of fermion line
and, finally, two-electron cluster operat%g by an open circle with two pairs of fer
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mion lines. Expression24) and @5) are used for the calculation of the correlatit
energy in the BWCC theory as well as in standard CC theories.

Substituting the exponential ansati@) into the Bloch equationlf), we get the
basic equation for the cluster operaiain the BW fornd15

N

A AN
e'=1+BVe' . (26)

N
The unknown cluster componeriiscan be determined from the Bloch equation in 1
matrix form (7). Substituting the exponential ansat8)(and taking the configuration:
®; from the subspace spannedrbyimes excited configurations provides us with

A AN A N
(Eo - Ei) @i |Tn| q30[': @i \Y eT| CDOD_ (Eo - Ei) mDi |eT - Tn| ‘DoD (27)

and this equation can be used for the calculation of cluster amplitudes in the B
theory. It is worthwhile to note that the first term on the right hand side can be diag
matically represented by means of connected as well as disconnected diaf
whereas only disconnected diagrams come into consideration in the case of the
term. For the case of monoexcited amplitudes the previous equation reduces to

(€0~ E) [ [Ty @ol= 0 V | 0 29)

and, analogously, for the case of biexcited amplitudes we have

A A A 1 A
(€0~ B) [P [Ty O= [ |V €| byl 21 (€~ E) @ [Tl 0, @9

where PpfUand fiOrepresent singly and doubly excited configurations with resy
to the ground state.

Cancellation of the Disconnected Terms in the Case of the BWCC with Doubl
Theory

If we adopt a simple approximation in the exponential and®z $uch that

AN
T=T,, (30
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we speak about the BWCC with Doubles (BWCCD) theory. The expression fo
correlation energy (Eq24) and @5)) will simplify to the form

NN
A€, = [@, VT,| Po[= (32
N
and the Eq.Z49) for the two-body cluster operatds will have the form
AB T AB 1y o B 1/ AN
(€0 — E) [P [T, ®ol= [P |V €'z D= [ M1+ T, + 21 )P0, (32

Since we do not work with the linked cluster theorem, contributions originating 1
the matrix element®f}® [0 el ®,Ocan be split into connected (C) and disconnec
(DC) ones; so one can write

N N 1 AN
(€0~ E) @ff® [T, @y [@F |V ' dylg + o1 @F VT3 Pol3c - 33

Contribution of the disconnected part can be easily computed with the use of dia
matic techniques

% [° |<\/-/|\-%| Doldc :% > + > =tAPAE, , (34)

wheret}® denotes the antisymmetrized biexcited cluster amplitudes.
If we substitute for the disconnected term into B3j),(we get

N
(€0~ E) th? = OB |V el dylg + th° A, (39
which implies
AN
(Eo—E) 1P = [@f° Vel D3 . 36)
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Here, we have to note that EQ5) reduces to Eq.36) only in the case when the clustt
amplitudes are fully converged. So, the cancellation of disconnected contributic
the BWCCD theory is done iteratively and the full cancellation is achieved by the
convergence of cluster amplitudes. One can thus conclude that both appraach
standard CCD theory with the use of the linked cluster theorem and the BWCCD t
are fully equivalent.

Cancellation of the Disconnected Terms in the Case of the BWCC with Single
and Doubles Theory

If we adopt the following approximation of the cluster opera2@y (
N N
2

N
T=T,+T (37)

we speak about the BWCC with Singles nad Doubles (BWCCSD) theory. Now
correlation energg, is determined by Eq24) and @5), one-body cluster operat%g
by Eq. 8) and two-body cluster operatdy, by Eq. @9). In order to simplify ex-
pressions for cluster amplitudes we proceed in an analogous way as in the case
BWCCD theory. Let us start with the monoexcited cluster amplitudes. Since h
than triply-excited clusters do not contribute, E28)(reduces to the form
N N N N
(€0~ E) [ [Ty| Dol [OF V exp(Ty + T)| @0
AT, 4T, + 2 T4 T T+ 200, (39
- | 1 2 21 1 1'2 3l 1 (0l
N N N
If we split contributions coming from the matrix elemédt® |V exp(T, + T,)| ®,into
connected and disconnected ones, we have
N N N N N N N
(Eo— E)) [Of [Ty] Dol [Of |V exp(T, + T,)| Dol + [P |V exp(Ty + Ty)| Polge - (39)

The contribution of the disconnected part can be expressed in the form

N AN

D [V exp(Ty + T Poge = O ME T2+ T,T, + = T9)| Oyl = 40
iV exp(Ty + T,)| ®oldc ||(2!1 ) 3!1)| olBe (40)

L>Oxz+>o+%>ox3
Q!O @ &@
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which implies
N N N
[ |V exp(Ty + T,)| Poldc =t AE, | 1)

wheret denotes the monoexcited cluster amplitudes.
Substituting for the disconnected part into B3§) (eads us to the equation

N N N
(Eo—E) 1 =10 [V exp(T, + Ty)| Pold + 1 AL, (42
that can be simplified with the use of the MP partitionig-(6) to the final form
N N N
(5 — &) th =[O |V exp(Ty + T,)| Dylg 43

Here, we should again stress that B®) feduces to Eq4Q) only in the case when th
cluster amplitudes are fully converged.

The two-body cluster amplitudes are determined by E9). (n contrast to one-body
cluster amplitudes, the right hand side of E2) (how consists of two terms. Here w
recall that the first term can be expanded in the form

AB N N N AB N N N 1 0 1 N NN
[@AB |V exp(T, + Tp)| o= (@A) |V(1+T1+T2 S T+ T3+ T, +
N A 1 N
+§T3 T2T +51 Tl oo (44)

since higher than quadruply-excited clusters do not contribute. The second term
calculated easilyi,e.

1

1
~21 &

- E) 4P (T3 o= - 2 (

== (&-E) ('[|At.|]3 - tﬁtF) , (G

Eo - Ei) 0 AB 0 1J [tﬁt‘?

where] 1J andd ag are antisymmetrizers of the form

A p=1-P( - J (46)
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so the equation for biexcited amplitud@9)(will read
N N N
(€~ E) t)° = [0 [V exp(T; + Ty)| P~ (€, ~ E) (5 ~ thtF) . @7)

If we split contributions coming from the first term into connected and disconne
ones, we have

N N N N N N
(Eo—E) 13° =@} |V exp(T, + T)| @3 + @ [V exp(Ty + T,)| Pl —
= (€~ ) (tMtF ~tht) . (48)
Disconnected contributions can be divided into three groups: the first group (1) co
of diagrams containing on‘El operator disconnected, the second group (Il) consist
diagrams containing two‘fl operators both disconnected and the third group (lll) c

sists of diagrams containing the opera‘f@ndisconnected. The first group can be dig
rammatically represented by means of linked diagrams,

——

N N N
>Vexp(T1+T ‘
C
which implies (see also réf.
N N N N N N
D N exp(T, + T)| Dol = 0 pald D5 IV exp(T, + Tl Ogld] . (49)

If we substitute for the connected part from E)( the whole contribution of the firs
group will equal to

[° |<\/ eXp(%l + fl\-z)| RIS i ABﬁ ulth (g —€) 5] =

= (g +&5— &5 — &) (M5 - 1317) (50

or with the use of the MP partitioning)£(6)

D V exp(T, + Tl P = (B, - E) (18— 146°) . 51)
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The second group can be diagrammatically represented by means of unlinked dia
i.e.

2l

14— Ly 4 B + >OX(4)

1
3! ! @ 4! E i
S0 one can write (see also fgf.
N N N
[ |V exp(Ty + T,)| dofd = AL, (5 - t3tf) . 62

The third group can be diagrammatically represented by means of unlinked diac
i.e.

B

which provides us with (see also fgf.

+
ST
X
S}
_+_

DB [V exp(T, + T,)| Do) = AE thP . 53

If we sum contributions51), (52) and 63) together, the overall contribution of th
disconnected part will be

N N N
[ V exp(Ty + Ty)| Dolde = A&t + (€ — E)) (1T — thtF) . G

Substituting for the disconnected part into &) (gives us the following equation fo
the biexcited cluster amplitudes

(Eo-E) t® =[@P |<\/ eXp(%l + /1\-2)| Dold + A& 1° (59)
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and this equation can be simplified using the MP partitioning to the final form
N N N
(& +&;— €5 —€p) 1Y° = [P Vexp(T, + T,)| Pl . (56)

Equations for the monoexcited amplitudd8)(as well as for the biexcited amplitude
(56) are equivalent to those used in the standard CCSD theory; so one can conclu
both approaches, CCSD and BWCCSD are fully equivalent in the case of fully
verged amplitudes.

Cancellation of the Disconnected Terms in the Case of the Linear BWCC with
Doubles Theory

If we adopt simple approximation in the exponential ansBy (
N N
T=T, (57

and, at the same time, we neglect nonlinear terms in the exponential expansion,
speak about the linear BWCCD (L-BWCCD) theory. Then, the correlation energ
the ground statAE is given by the same expression as in the BWCCD dase,

NN
AE, =[P, VT, Py (58
or using the configuration state function (CSF) formalism as
N N
Ag, = Z [®, V] PALP [Ty Py, 9
i

where the summation is over all biexcited configuratioch®[J As concerns the deter
mination of the biexcited cluster amplitudes, here we have two possibilities. The
possibility lies in the complete neglect of nonlinear terms, so the equation for the
cited amplitudes32) will simplify to the form

N N N
(€ — E) @} [T,| ®olF [@f° M(1 + T,)| 0] (60)
which can be rewritten in CSF formalism as
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N N N N
(€~ B) [0 [T] D= [0 V] gl 3 [0 V] ST [T &, (61)
j

where [®@0and [®@0are biexcited configurations. The given equation is depent
on the correlation energy and is the same as in the configuration interaction rr
limited to doubles (CI-D); so the complete neglect of nonlinear terms brings us
valence with the CI-D method. The second possibility is somewhat more sophisti
In order to destroy dependence on the exact energy, we neglect only connectec
ratic terms in Eq.32), whereas the disconnected quadratic terms stay present. |
realize that the contribution of the disconnected nonlinear term is determined I34)Eq
we get

N N N N
(€0 = ) [P [Tyl 0= [P V(1 + T,)| Pl AE [ [T,| D] (62
what can be simplified to the form
N N
(5 + &~ €a — €) 1Y° = [P V(1 + T,)| D0 (63
or in the CSF formalism
N N N N
(B — B) [0 [Ty ®o= [0 V] D+ 5 (03 V] O [Ty D1, (64)
j

Equations §3) and 64) are now independent of the correlation energy and they
equivalent with those used in the standard L-CCD theory. The advantage of th
proach is that we are able to perform the L-CCD calculations in the CSF formalisr
comparison see also the article by Cizek and P&ldus

DISCUSSION

In our previous articlé4!®we turned our attention to the Brillouin~Wigner bas
coupled cluster method. We have shown that we are able to obtain identical res
with the standard nondegenerate CC theory at practically no extra expenses.

article we present more detail explanation of cancellation of disconnected contrib
in the BWCC theory and we show how the both approaches become identical. He
should mention that Eq8%), (36), (42), (43), (55), (56), (62) and 63) not only directly

lead to standard CC theories but they also correspond to denominator shifts in st
CC theories with the denominator shift being cancelled out when the equations ar:
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converged. This way of cancellation of disconnected contributions is manifeste
different shifts in different iterations and their full cancellation in the fully conver
case.

As is well known, the standard nondegenerate CC theory is considered to be tl
method to account for correlation energy of closed-shell systems, however, its
the case of electron quasi-degeneracy or, in general, open-shell systems is fe
being satisfactory. One of the main obstacles is the occurrence of the so-called ir
states in existing MR CC theories. The problem of intruder states is common tc
MR MBPT as well as MR CC theories and has stimulated development of man)
perturbative methods based on various shifting techniques. From this point of vie
multireference formulation of the BWCC method (with the presence of denomir
shifts) seems to be very interesting and will be our task in the next future.
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