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In our article (Hubac I., Neogrady P.: Phys. Rev. A 50, 4558 (1994)) we have developed size-exten-
sive Brillouin–Wigner coupled cluster (BWCC) theory. We have shown that the BWCC theory is
fully equivalent to the standard coupled cluster theory. However, the BWCC theory does not obey
the so-called linked cluster theorem. In this article we discuss the cancellation of disconnected terms
in the BWCC theory.
Key words: Brillouin–Wigner perturbation theory; Coupled clusters; Size consistency; Linked cluster
theorem.

The standard coupled cluster (CC) theory in its nondegenerate version for closed-shell
systems represents one of the most efficient methods for the inclusion of correlation
effects in atoms and molecules1–13. Nevertheless, its multireference version is far from
being a standard method to account for correlation effects of generally open-shell sys-
tems. One of the main problems that the multireference coupled cluster (MR CC) the-
ory as well as relative multireference many-body perturbation theory (MR MBPT) have
to face to is the problem of intruder states which may even cause divergence of both
theories. In our recent articles14,15 we have developed the Brillouin–Wigner coupled
cluster (BWCC) theory. We have shown that the BWCC theory is fully equivalent to
the standard CC theory, but it differs by the fact that it does not employ the linked
cluster theorem. Therefore, a question arises how it is with the cancellation of discon-
nected diagrams in the BWCC theory since we have shown that the BWCC theory is a
size-extensive method. In this article we will discuss the cancellation of disconnected
terms in the BWCC method in order to make clear the relation between the BWCC and
standard CC theories. This question is also important with respect to possibility of
multireference formulation of the BWCC theory.
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THEORETICAL

The details of the BWCC theory were presented in our articles14,15. Here, we mention
the main points again. The electronic Hamiltonian of an atomic or molecular system
can be expressed in the second-quantized form as

H
^

 = ∑ 
PQ

〈P |ĥ| Q〉 X^P
+ X

^
Q + 

1
2

  ∑ 
PQRS

〈PQ |v̂| RS〉 X^P
+ X

^
Q
+  X

^
S X

^
R  , (1)

where 〈P |h| Q〉 is a one-electron integral, 〈PQ |v| RS〉 is a two-electron integral and
{P,Q,R,S,…} represents one-electron orthonormal basis set of spinorbitals on which we
define the system of creation (X̂P

+) and annihilation (X̂P) operators. Using the hole-par-
ticle formalism the electronic Hamiltonian (1) can be expressed in the form

H
^

 = 〈Φ0 |H
^

| Φ0〉 + ∑ 
PQ

fPQ N[X
^

P
+ X

^
Q] + 

1
2
  ∑ 
PQRS

〈PQ |v̂| RS〉 N[X
^

P
+ X

^
Q
+  X

^
S X

^
R]  , (2)

where N[...] denotes the normal ordered product of creation and annihilation operators
with respect to the Fermi vacuum |Φ0〉 and fPQ are matrix elements of the Fock operator

fPQ = 〈P |ĥ| Q〉 + ∑ 
I∈Φ0

〈PI |v̂| QI〉 − 〈PI |v̂| IQ〉 (3)

with the summation being over all spinorbitals occupied in |Φ0〉. As is usual in pertur-
bation theory, let us split the exact Hamiltonian (2) into two parts, namely

H
^

 = H
^

0 + V
^

(4)

H
^

0 = 〈Φ0 |H
^

| Φ0〉 + ∑ 
P

εP N[X
^

P
+ X

^
P] (5)

V
^
 = ∑ 

PQ

(fPQ − εPδPQ) N[X
^

P
+ X

^
Q] + 

1
2
  ∑ 
PQRS

〈PQ |v̂| RS〉 N[X
^

P
+ X

^
Q
+  X

^
S X

^
R]  , (6)

where H
^

0 is a zeroth-order Hamiltonian, εP are one-electron (spinorbital) energies and
V̂ is a perturbation. This type of partitioning is denoted as a Møller–Plesset (MP) one.
In general, our perturbation V

^
 consists of two parts, namely the one-electron part and

two-electron part. We recall that the one-electron part vanishes when the Hartree-Fock
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spinorbitals are employed; however, in this work we will in general assume that non-
Hartree–Fock spinorbitals are used. Let us further assume that we know the solution of
the characteristic problem of the zeroth-order Hamiltonian

H
^

0Φi = EiΦi (7)

and our task is to find a solution of the Schrödinger equation for the exact Hamiltonian H
^

H
^Ψi = εiΨi  . (8)

If we are interested in the ground state, the exact wave function Ψ0 and the exact
energy ε0 can be expanded in the Brillouin–Wigner (BW) perturbation series as follows

|Ψ0〉 = (1 + B
^
V
^
 + B

^
V
^
 B
^
V
^
 + …) |Φ0〉 (9)

ε0 = 〈Φ0 |H
^

| Φ0〉 + 〈Φ0 |V
^
 + V

^
 B
^
V
^
 + V

^
 B
^
V
^
 B
^
V
^
 + …| Φ0〉  , (10)

where B
^
 is the BW type of propagator

B
^
 = ∑ 

i≠0

|Φi〉 〈Φi|

ε0 − Ei

  . (11)

We recall that the BW perturbation expansion (9) at the same time prescribes the nor-
malization of the exact wave functions to be

〈Φ0|Ψ0〉 = 〈Φ0|Φ0〉 = 1 (12)

which is referred to as an intermediate normalization. If we introduce a new operator
Ω̂ as

Ω^  = 1 + B
^
V
^
 + B

^
V
^
 B
^
V
^
 + … (13)

the exact wave function (9) can be expressed in the form
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|Ψ0〉 = Ω^  |Φ0〉  . (14)

As one can see, the operator Ω^  is a wave operator (it transforms the zeroth-order wave
function of the ground state into the exact wave function) and obeys the operator equa-
tion

Ω^  = 1 + B
^
V
^Ω^ (15)

that may be viewed as a Bloch equation in the Brillouin–Wigner form in contrast to the
standard Bloch equation

H
^Ω^  = Ω^ H

^Ω^ (16)

that determines the wave operator Ω^  in the MR Rayleigh–Schrödinger perturbation
theory as well as MR CC theories16–20. In order to obtain the wave operator Ω^  in a form
suitable for practical calculations, we project Eq. (15) onto the excited configurations
Φi from the left and the ground state configuration from the right which brings us a
system of equations

(ε0 − Ei) 〈Φi |Ω
^

| Φ0〉 = 〈Φi |V
^Ω^ | Φ0〉 (17)

that may be viewed as a matrix formulation of the Bloch equation in the Brillouin–Wig-
ner form. Using the wave operator (13), the exact energy (10) can be written as

ε0 = 〈Φ0 |H
^

0| Φ0〉 + 〈Φ0 |V
^Ω^ | Φ0〉  . (18)

So far, we have specified the wave operator Ω^  by means of the BW perturbation
expansion (13) or (15). If we adopt an exponential ansatz for the wave operator Ω^ , we
may speak about the Brillouin–Wigner coupled-cluster theory; i.e.

Ω^  = eT̂  , (19)
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where T
^
 is a cluster operator defined with respect to the ground state configuration Φ0

and, in general, involves one-body (T̂1), two-body (T̂2) up to the N-body (T̂N) cluster
components

T
^
 = T

^
1 + T

^
2 + … + T

^
N (20)

with N being the total number of electrons. Substituting the exponential ansatz (19) into
the expression for the exact energy (18), we get

ε0 = 〈Φ0 |H
^

0| Φ0〉 + 〈Φ0 |V
^
 eT̂| Φ0〉 (21)

which implies that the correlation energy ∆ε0

∆ε0 = ε0 − E0 = ε0 − 〈Φ0 |H
^

| Φ0〉 (22)

is given by the expression

∆ε0 = 〈Φ0 |V
^
 eT̂| Φ0〉  . (23)

Since at most doubly-excited clusters may contribute to the energy, the correlation en-
ergy takes the final form

∆ε0 = 〈Φ0 |V
^
T
^

1| Φ0〉 + 〈Φ0 |V
^
T
^

2| Φ0〉 + 
1
2!

 〈Φ0 |V
^
T
^

1
2| Φ0〉 (24)

or by means of diagrammatic techniques (nonoriented Hugenholtz diagrams)

where the one-electron part of the perturbation V
^
 is represented by a full circle with one

pair of fermion lines, two-electron part of V̂ by a full circle with two pairs of fermion
lines, one-electron cluster operator T̂1 by an open circle with one pair of fermion lines
and, finally, two-electron cluster operator T̂2 by an open circle with two pairs of fer-

∆ε0 = 
1
2! (25)
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mion lines. Expressions (24) and (25) are used for the calculation of the correlation
energy in the BWCC theory as well as in standard CC theories.

Substituting the exponential ansatz (19) into the Bloch equation (15), we get the
basic equation for the cluster operator T̂ in the BW form14,15

eT̂ = 1 + B
^
V
^
 eT̂  . (26)

The unknown cluster components T
^

n can be determined from the Bloch equation in the
matrix form (17). Substituting the exponential ansatz (19) and taking the configurations
Φi  from the subspace spanned by n times excited configurations provides us with

(ε0 − Ei) 〈Φi |T
^

n| Φ0〉 = 〈Φi |V
^
 eT̂| Φ0〉 − (ε0 − Ei) 〈Φi |e

T̂ − T
^

n| Φ0〉 (27)

and this equation can be used for the calculation of cluster amplitudes in the BWCC
theory. It is worthwhile to note that the first term on the right hand side can be diagram-
matically represented by means of connected as well as disconnected diagrams,
whereas only disconnected diagrams come into consideration in the case of the second
term. For the case of monoexcited amplitudes the previous equation reduces to

(ε0 − Ei) 〈ΦI
A |T

^
1| Φ0〉 = 〈ΦI

A |V
^
 eT̂| Φ0〉 (28)

and, analogously, for the case of biexcited amplitudes we have

(ε0 − Ei) 〈ΦIJ
AB |T

^
2| Φ0〉 = 〈ΦIJ

AB |V
^
 eT̂| Φ0〉 − 

1
2!

 (ε0 − Ei) 〈ΦIJ
AB |T

^
1
2| Φ0〉  , (29)

where |ΦI
A〉 and |ΦIJ

AB〉 represent singly and doubly excited configurations with respect
to the ground state.

Cancellation of the Disconnected Terms in the Case of the BWCC with Doubles
Theory

If we adopt a simple approximation in the exponential ansatz (19), such that

T
^
 = T

^
2  , (30)
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we speak about the BWCC with Doubles (BWCCD) theory. The expression for the
correlation energy (Eqs (24) and (25)) will simplify to the form

and the Eq. (29) for the two-body cluster operator T
^

2 will have the form

(ε0 − Ei) 〈ΦIJ
AB |T

^
2| Φ0〉 = 〈ΦIJ

AB |V
^
 eT̂2| Φ0〉 = 〈ΦIJ

AB |V
^(1 + T

^
2 + 

1
2!

 T
^

2
2)| Φ0〉  . (32)

Since we do not work with the linked cluster theorem, contributions originating from
the matrix element 〈ΦIJ

AB |V̂ eT̂2| Φ0〉 can be split into connected (C) and disconnected
(DC) ones; so one can write

(ε0 − Ei) 〈ΦIJ
AB |T

^
2| Φ0〉 = 〈ΦIJ

AB |V
^
 eT̂2| Φ0〉C + 

1
2!

 〈ΦIJ
AB |V

^
T
^

2
2| Φ0〉DC  . (33)

Contribution of the disconnected part can be easily computed with the use of diagram-
matic techniques

where tIJ
AB denotes the antisymmetrized biexcited cluster amplitudes.

If we substitute for the disconnected term into Eq. (33), we get

(ε0 − Ei) tIJAB = 〈ΦIJ
AB |V

^
 eT̂2| Φ0〉C + tIJ

AB ∆ε0 (35)

which implies

(E0 − Ei) tIJAB = 〈ΦIJ
AB |V

^
 eT̂2| Φ0〉C  . (36)

∆ε0 = 〈Φ0 |V
^
T
^

2| Φ0〉 = (31)

1
2!

 〈ΦIJ
AB |V

^
T
^

2
2| Φ0〉DC = 

1
2

 = tIJ
AB∆ε0  , (34)
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Here, we have to note that Eq. (35) reduces to Eq. (36) only in the case when the cluster
amplitudes are fully converged. So, the cancellation of disconnected contributions in
the BWCCD theory is done iteratively and the full cancellation is achieved by the full
convergence of cluster amplitudes. One can thus conclude that both approaches, i.e.
standard CCD theory with the use of the linked cluster theorem and the BWCCD theory
are fully equivalent.

Cancellation of the Disconnected Terms in the Case of the BWCC with Singles
and Doubles Theory

If we adopt the following approximation of the cluster operator (20)

T
^
 = T

^
1 + T

^
2 (37)

we speak about the BWCC with Singles nad Doubles (BWCCSD) theory. Now, the
correlation energy ε0 is determined by Eqs (24) and (25), one-body cluster operator T̂1

by Eq. (28) and two-body cluster operator T
^

2 by Eq. (29). In order to simplify ex-
pressions for cluster amplitudes we proceed in an analogous way as in the case of the
BWCCD theory. Let us start with the monoexcited cluster amplitudes. Since higher
than triply-excited clusters do not contribute, Eq. (28) reduces to the form

(ε0 − Ei) 〈ΦI
A |T

^
1| Φ0〉 = 〈ΦI

A |V
^
 exp (T^1 + T

^
2)| Φ0〉                                        

= 〈ΦI
A |V

^(1 + T
^

1 + T
^

2 + 
1
2!

 T
^

1
2 + T

^
1T
^

2 + 
1
3!

 T
^

1
3)| Φ0〉  . (38)

If we split contributions coming from the matrix element 〈ΦI
A |V

^
 exp (T^1 + T

^
2)| Φ0〉 into

connected and disconnected ones, we have

(ε0 − Ei) 〈ΦI
A |T

^
1| Φ0〉 = 〈ΦI

A |V
^
 exp (T^1 + T

^
2)| Φ0〉C + 〈ΦI

A |V
^
 exp (T^1 + T

^
2)| Φ0〉DC  .       (39)

The contribution of the disconnected part can be expressed in the form

〈ΦI
A |V

^
 exp (T^ 1 + T

^
2)| Φ0〉DC = 〈ΦI

A |V
^( 1

2!
 T
^

1
2 + T

^
1T
^

2 + 
1
3!

 T
^

1
3)| Φ0〉DC = (40)
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which implies

〈ΦI
A |V

^
 exp (T^ 1 + T

^
2)| Φ0〉DC = tI

A ∆ε0  , (41)

where tI
A denotes the monoexcited cluster amplitudes.

Substituting for the disconnected part into Eq. (39) leads us to the equation

(ε0 − Ei) tIA = 〈ΦI
A |V

^
 exp (T^ 1 + T

^
2)| Φ0〉C + tI

A ∆ε0 (42)

that can be simplified with the use of the MP partitioning (4)–(6) to the final form

(εI − εA) tIA = 〈ΦI
A |V

^
 exp (T^ 1 + T

^
2)| Φ0〉C  . (43)

Here, we should again stress that Eq. (42) reduces to Eq. (43) only in the case when the
cluster amplitudes are fully converged.

The two-body cluster amplitudes are determined by Eq. (29). In contrast to one-body
cluster amplitudes, the right hand side of Eq. (29) now consists of two terms. Here we
recall that the first term can be expanded in the form

〈ΦIJ
AB |V

^
 exp (T^1 + T

^
2)| Φ0〉 = 〈ΦIJ

AB |V
^(1 + T

^
1 + T

^
2 + 

1
2!

 T
^

1
2 + 

1
2!

 T
^

2
2 + T

^
1T
^

2 +

+ 
1
3!

 T
^

1
3 + 

1
2!

 T
^

1
2T
^

2 + 
1
4!

 T
^

1
4)| Φ0〉 (44)

since higher than quadruply-excited clusters do not contribute. The second term can be
calculated easily, i.e.

− 
1
2!

 (ε0 − Ei) 〈ΦIJ
AB |T

^
1
2| Φ0〉 = − 

1
2
 (ε0 − Ei) ℘AB ℘IJ [tI

AtJ
B] =

= − (ε0 − Ei) (tIAtJ
B − tJ

AtI
B)  , (45)

where ℘̂IJ and ℘̂AB are antisymmetrizers of the form

℘̂IJ = 1 − P
^(I ↔ J) (46)
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so the equation for biexcited amplitudes (29) will read

(ε0 − Ei) tIJAB = 〈ΦIJ
AB |V

^
 exp (T^1 + T

^
2)| Φ0〉 − (ε0 − Ei) (tIAtJ

B − tJ
AtI

B)  . (47)

If we split contributions coming from the first term into connected and disconnected
ones, we have

(ε0 − Ei) tIJAB = 〈ΦIJ
AB |V

^
 exp (T^1 + T

^
2)| Φ0〉C + 〈ΦIJ

AB |V
^
 exp (T^1 + T

^
2)| Φ0〉DC −

− (ε0 − Ei) (tIAtJ
B − tJ

AtI
B)  . (48)

Disconnected contributions can be divided into three groups: the first group (I) consists
of diagrams containing one T̂1 operator disconnected, the second group (II) consists of
diagrams containing two  T̂1 operators both disconnected and the third group (III) con-
sists of diagrams containing the operator T̂2 disconnected. The first group can be diag-
rammatically represented by means of linked diagrams, i.e.

which implies (see also ref.7)

〈ΦIJ
AB |V

^
 exp (T^1 + T

^
2)| Φ0〉DC

(I)  = ℘̂AB℘̂IJ [tI
A〈ΦJ

B |V
^
 exp (T^1 + T

^
2)| Φ0〉C]  . (49)

If we substitute for the connected part from Eq. (43), the whole contribution of the first
group will equal to

〈ΦIJ
AB |V

^
 exp (T^1 + T

^
2)| Φ0〉DC

(I)  = ℘̂AB℘̂IJ [tI
A (εB − εJ) tJB] = 

= (εI + εJ − εA − εB) (tIAtJ
B − tJ

AtI
B) (50)

or with the use of the MP partitioning (4)–(6)

〈ΦIJ
AB |V

^
 exp (T^1 + T

^
2)| Φ0〉DC

(I)  = (E0 − Ei) (tIAtJ
B − tJ

AtI
B)  . (51)

V
^
 exp (T^ 1 + T

^
2)

C
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The second group can be diagrammatically represented by means of unlinked diagrams,
i.e.

so one can write (see also ref.7)

〈ΦIJ
AB |V

^
 exp (T^1 + T

^
2)| Φ0〉DC

(II) = ∆ε0 (tIAtJ
B − tJ

AtI
B)  . (52)

The third group can be diagrammatically represented by means of unlinked diagrams,
i.e.

which provides us with (see also ref.7)

〈ΦIJ
AB |V

^
 exp (T^1 + T

^
2)| Φ0〉DC

(III ) = ∆ε0 tIJ
AB  . (53)

If we sum contributions (51), (52) and (53) together, the overall contribution of the
disconnected part will be

〈ΦIJ
AB |V

^
 exp (T^1 + T

^
2)| Φ0〉DC = ∆ε0 tIJ

AB + (ε0 − Ei) (tIAtJ
B − tJ

AtI
B)  . (54)

Substituting for the disconnected part into Eq. (48) gives us the following equation for
the biexcited cluster amplitudes

(ε0 − Ei) tIJAB = 〈ΦIJ
AB |V

^
 exp (T^1 + T

^
2)| Φ0〉C + ∆ε0 tIJ

AB (55)
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and this equation can be simplified using the MP partitioning to the final form

(εI + εJ − εA − εB) tIJAB = 〈ΦIJ
AB |V

^
 exp (T^1 + T

^
2)| Φ0〉C  . (56)

Equations for the monoexcited amplitudes (43) as well as for the biexcited amplitudes
(56) are equivalent to those used in the standard CCSD theory; so one can conclude that
both approaches, CCSD and BWCCSD are fully equivalent in the case of fully con-
verged amplitudes.

Cancellation of the Disconnected Terms in the Case of the Linear BWCC with
Doubles Theory

If we adopt simple approximation in the exponential ansatz (19)

T
^
 = T

^
2 (57)

and, at the same time, we neglect nonlinear terms in the exponential expansion, we can
speak about the linear BWCCD (L-BWCCD) theory. Then, the correlation energy for
the ground state ∆ε0 is given by the same expression as in the BWCCD case, i.e.

∆ε0 = 〈Φ0 |V
^
T
^

2| Φ0〉 (58)

or using the configuration state function (CSF) formalism as

∆ε0 = ∑ 
i

〈Φ0 |V
^
| Φi

(2)〉 〈Φi
(2) |T

^
2| Φ0〉  , (59)

where the summation is over all biexcited configurations | Φi
(2)〉. As concerns the deter-

mination of the biexcited cluster amplitudes, here we have two possibilities. The first
possibility lies in the complete neglect of nonlinear terms, so the equation for the biex-
cited amplitudes (32) will simplify to the form

(ε0 − Ei) 〈ΦIJ
AB |T

^
2| Φ0〉 = 〈ΦIJ

AB |V
^(1 + T

^
2)| Φ0〉 (60)

which can be rewritten in CSF formalism as
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(ε0 − Ei) 〈Φi
(2) |T

^
2| Φ0〉 = 〈Φi

(2) |V
^
| Φ0〉 + ∑ 

j

〈Φi
(2) |V

^
| Φj

(2)〉 〈Φj
(2) |T

^
2| Φ0〉  , (61)

where | Φi
(2)〉 and | Φj

(2)〉 are biexcited configurations. The given equation is dependent
on the correlation energy and is the same as in the configuration interaction method
limited to doubles (CI-D); so the complete neglect of nonlinear terms brings us equi-
valence with the CI-D method. The second possibility is somewhat more sophisticated.
In order to destroy dependence on the exact energy, we neglect only connected quad-
ratic terms in Eq. (32), whereas the disconnected quadratic terms stay present. If we
realize that the contribution of the disconnected nonlinear term is determined by Eq. (34),
we get

(ε0 − Ei) 〈ΦIJ
AB |T

^
2| Φ0〉 = 〈ΦIJ

AB |V
^(1 + T

^
2)| Φ0〉 + ∆ε0 〈ΦIJ

AB |T
^

2| Φ0〉 (62)

what can be simplified to the form

(εI + εJ − εA − εB) tIJAB = 〈ΦIJ
AB |V

^(1 + T
^

2)| Φ0〉 (63)

or in the CSF formalism

(E0 − Ei) 〈Φi
(2) |T

^
2| Φ0〉 = 〈Φi

(2) |V
^
| Φ0〉 + ∑ 

j

〈Φi
(2) |V

^
| Φj

(2)〉 〈Φj
(2) |T

^
2| Φ0〉  . (64)

Equations (63) and (64) are now independent of the correlation energy and they are
equivalent with those used in the standard L-CCD theory. The advantage of this ap-
proach is that we are able to perform the L-CCD calculations in the CSF formalism; for
comparison see also the article by Cizek and Paldus3.

DISCUSSION

In our previous articles14,15 we turned our attention to the Brillouin–Wigner based
coupled cluster method. We have shown that we are able to obtain identical results as
with the standard nondegenerate CC theory at practically no extra expenses. In this
article we present more detail explanation of cancellation of disconnected contributions
in the BWCC theory and we show how the both approaches become identical. Here we
should mention that Eqs (35), (36), (42), (43), (55), (56), (62) and (63) not only directly
lead to standard CC theories but they also correspond to denominator shifts in standard
CC theories with the denominator shift being cancelled out when the equations are fully
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converged. This way of cancellation of disconnected contributions is manifested by
different shifts in different iterations and their full cancellation in the fully converged
case.

As is well known, the standard nondegenerate CC theory is considered to be the best
method to account for correlation energy of closed-shell systems, however, its use in
the case of electron quasi-degeneracy or, in general, open-shell systems is far from
being satisfactory. One of the main obstacles is the occurrence of the so-called intruder
states in existing MR CC theories. The problem of intruder states is common to both
MR MBPT as well as MR CC theories and has stimulated development of many new
perturbative methods based on various shifting techniques. From this point of view, the
multireference formulation of the BWCC method (with the presence of denominator
shifts) seems to be very interesting and will be our task in the next future.
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